

Public Health Laboratory, Health Services Executive, Cherry Orchard Hospital, Ballyfermot, D10X997 Tel: 014755175 e mail: <u>PHL.dublin@hse.ie</u>

National VTEC Reference Laboratory Annual Report of VTEC in Ireland 2022

Image Infection Control Today

Dr Tee Keat Teoh, Consultant Microbiologist and Laboratory Director (Started June 2023) Dr Eleanor McNamara, Consultant Microbiologist and Laboratory Director (Retired June 2023). Dr Anne Carroll, Chief Medical Scientist.

Introduction

The Public Health Lab-Dublin (incorporating the NRL-VTEC) has been providing reference services for Verotoxigenic E. coli (VTEC) since 1998 and has been receiving isolates from all Human clinical cases of VTEC in Ireland since 2002. The PHL is located in the grounds of Cherry Orchard Hospital, and is administered by HSE Community Healthcare East (CHO 6).

The NRL-VTEC is committed to providing a high quality and timely service and is accredited to both ISO 15189 and ISO 17025 by INAB, for culture and PCR. WGS was introduced in 2018, one isolate from all VTEC cases has characterised by WGS since. The VTEC WGS service was the recipient of the HSE Excellence awards for innovation in service in 2018 <u>https://healthmanager.ie/2019/03/hse-award-for-new-laboratory-service/</u> For Full scope of accreditation see <u>http://www.inab.ie/FileUpload/Testing/Public-Health-Laboratory-Dublin-101T.pdf</u>

To facilitate work flow efficiency, we request that urgent samples or large numbers of samples for referral are preceded by a phone call to NRL-VTEC and that all samples are accompanied by a completed NRL-VTEC request form. Each laboratory has been sent a customised request form, if you have not received this please e mail phl.dublin@hse.ie and we will send it to you, alternatively current request forms can be downloaded from http://www.hse.ie/eng/services/list/5/publichealth/publichealthlabs/Public_Health_Laboratory_Dublin/Request_Fo rms.html We also ask that as many of the fields as possible are completed. Mandatory is 'External lab ID', 'Name', 'DOB'. Preferably include clinical details (especially if HUS). In addition, we appreciate your including vtx PCR result and CP value, this enables us to streamline our testing protocol and provide you with the fastest turnaround time.

If you have any queries about our services or the content of this report please do not hesitate to contact us.

Summary

In 2022, 992 VTEC cases were detected and VTEC was isolated from 760 (77%), this is a slight increase on 2021, in actual numbers but with increasing population the incidence/100000 is slightly decreased from 20.2/100000 in 2021 to 19.3 in2022. VTEC O26 remained the most common serogroup with VTEC O157 second. Non O157/O26 serogroups continued to increase in 2022, although the increase was small. VTEC rates in Ireland remain the highest in Europe at 19.3/100000 in 2022. The EU average was 2.4/100000 in 2018 with Norway, the country with the second highest rates less than half that of Ireland at 9.3/100000.

<u>https://www.ecdc.europa.eu/sites/default/files/documents/shiga-toxin-verocytototoxin-escherichia-coli-annual-</u> <u>epidemiological-report-2018.pdf</u> The proportion of cases where VTEC is detected by PCR but the organism could not be isolated remains stable over the 6 years at an average of 20% (23.5% in 2022).

Serogroups

The serogroup of VTEC isolates is determined by a combination of PCR and serology for culture positive cases and confirmed by WGS. Serogroup is therefore not determined for PCR positive but culture negative cases.

In 2022 there were 760 culture confirmed VTEC cases. 231(30%) were VTEC O26, this is a decrease from 36.5% in 2021. 168 (22%) were VTEC O157 this is an increase from 18% in 2021. 43 cases were VTEC O145 and 25 VTEC O103. The remaining 282 cases comprised numerous different serogroups (Tables 1, 2 & Figures 1 & 2).

Year				
	serogroup	cult pos and PCR pos(%)	PCR pos cult neg(%)	Total pos
2017	0157	207(100)	0(0)	207
	026	251(99.6)	1(0.4)	252
	Other	300(63.6)	174 (36.7)	474
	Total	758(81.2)	175(18.8)	933
2018	0157	273(99.6)	1(0.4)	274
	026	335(99.4)	2(0.6)	337
	Other	303(60.6)	197(39.4)	500
	Total	911(82)	200(18)	1111
2019	0157	152(100)	0(0)	152
	026	225(1000	0(0)	225
	Other	335(68.9)	151(31.1)	486
	Total	712(82.5)	151(17.5)	863
2020	0157	163(100)	0(0)	163
	026	248(100)	0(0)	248
	Other	276(66.3)	140(33.7)	416
	Total	687(83)	140(17)	827
2021	0157	143(100)	0(0)	143
	026	283(100)	0(0)	283
	Other	344(63.9)	194(36.1)	538
	Total	770(80)	194(20)	964
2022	0157	168(100)	0(0)	168
	026	231(100)	0(0)	231
	Other	361(61)	232(39)	593
	Total	760(77)	232(23)	992
	Grand Total	4568 (80.8)	1092 (19.2)	5660

Table 1: Number of VTEC cases in Ireland 2017-2022

Figure 1: Incidence/100000 of VTEC cases in Ireland 2002-2022

Table 2: Serogroup of VTEC cases in Ireland 2017-2021

Serogroup	2022	2021	2020	2019	2018	2017
Unknown		6	8	11	10	26
O10:H25		0	1			
O100:H20						1
O100:H30		1			1	
O101:H33		1			1	
O103:H2	24	20	26	27	27	38
O103:H11	1					
O103:H8				1		
O106:H45	2					
O104:H7		1	0			1
O107:H7		0	1			
O108:H2	2	1	2			1
O109:H16		0	1			1
O11:H5		1	0			
O110:H31		1	0			
O111:H2				1		
O111:H8	11	9	11	5	9	15
O112:H12		0	1			
O112:H21					1	
O112AB:H2				2	1	
O112AB:H21				1		

O113:H21	2	1	0	2	3	
O113:H4	11	8	9	5	5	2
O113:H7					1	
O113:H17						1
O115:H2					1	
O115:H25		0	1			
O117:H4		1	0			
O117:H7	4	1	4	5	3	
O117:H14	1				2	
O118/O151:H2	5	1			1	
O119:H4				1		
O121:H2						1
O121:H15				1		
O121:H19		1				
O122AB:H2				1		
O123:H10			1			
O123:H11				1		
O123:H2			1			
O125AC:H6	1	2				1
O126:H20	1	1				
O126:H8				1		
O127:H4			2			
O127:H21		1				
O127:H40					1	
O128AB:H2		2	14	10	8	8
O128AB:H4		1				
O128AB:H34			1			
O128AC:H2	10	1		4	1	2
O128AC:H4		1				
O128AC:H12				1		
O130:H11	2	1	1	2	3	4
O130:H26				1		
O133/O186:H2				1		
O136:H12			1	2		2
O136:H16					1	
O136:H20			1	1		
O138:H46	1					
O138:H48		1		1		
O145:H25				1		
O145:H28	43	62	47	66	53	63
O145:H34		1				
O146:H10						
O146:H21	31	19	18	16	29	
O146:H28	3	1		1	1	
O148:H8	1					
O148:H10	1					
O149:H1	2	1	2	1		

O15:H27				1		
O150:H2	3	5	5	1	2	4
O153:H15	1					
O153:H21	2					
O153:H40	2					
O153/O178:H19		1				1
O153/O178:H7		2	2	1	1	
O154:H31			1			
O155:H21	2			2	1	
O156:H25		4	1	2		
O157:H7	168	143	163	152	273	207
O157:H16	1					
O159:H42				2		
O162:H33	1	1				1
O165:H7	1					
O165:H25	3	2		2	1	
O166:H28	7	6	4	4	7	3
O167:H26		1	1	2		1
O168:H8	2	3	1	2	1	1
O17/O44:H18		1	1			
O171:H2			2			
O171:H8				1		
O171:H25		1		1		
O172:H25	3					
O174:H2			1			
O174:H8				2		1
O174:H21	3	5	1	4	6	6
O174:H8	3	3				
O176:H4	5	2	1		2	2
O176:H17						1
O177:H7				1		
0177:H11	1	4	3	1	2	1
0177:H25	4	11	2	3	1	1
0177:H45			2			
O178:H7	1					
O179:H8	2			1	1	
O181:H16	2	2		2	1	1
O182:H25	18	15	14	11	5	12
O183:H18	6	9	4	6	6	4
O183:H28					1	
O183:H2				1		
O184:H2						1
O185:H2	1			1		1
O187:H28		2				
O2:H6						1
O2:H25			1			
O21:H2	1					

O21:H6					1	
O21:H21	1					
O22:H14		2			1	
O22:H16						1
O23:H16	1					
O24:H4						1
O26:H11	231	283	248	225	335	251
O27:H30	2					
O3:H12	1					
O3:H21				1		
O30:H25		1				
O38:H26	1	2		1		3
O4:H2					1	
O43:H2						2
O45:H2					3	
O49:H10	1					
O5:H9	11	11	5	16	13	
O5:H19	1		1	1		
05:H-	1	1		1		18
O50/O2:H27	1	1	1			
O50/O2:H6	2	1	1	2	5	1
O55:H12	4	10	3	5	5	4
O55:H7	1	2	5	4	4	1
O55:H9					1	
O6:H10	1			1	1	1
O6:H31					1	
O6:H39		1				
O63:H6		1				
O65:H2						1
O69:H32	1					
07:H14	1					
070:H11	3					
071:H2	1					
O71:H8	2					
071:H11	3					
O71:H19					1	
O75:H5					1	
O75:H8			1		1	
O76:H7	1			1		
O76:H19	3		9	5	8	6
O78:H4	23	18	7	4		4
O78:H17						2
O79:H14	1			2	5	
O8:H8				1		
O8:H9	1	1	2	5	2	1
O8:H28	3	2	1			
08:H21	1			2		

O8:H14			1			
O8:H19	2		2	1	5	3
O8:H20				1		
O8:H30		1				
O80:H2			2			
081:H21			1			
O84:H2	5	12	8	11	6	10
O86:H2			1			
O86:H21		1		1		1
O87:H16					2	2
O88:H25			1			
O9:H9				1		
O9:H19	2					
O9:H30				1		
O90:H40	10	7	3	5	6	5
O91:H10					1	
O91:H14	26	20	15	23	14	144
O91:H21		1				
O96:H19					1	
O98:H21	1	2	1		2	3
O-Untypeable:H11	3			3	3	
O-Untypeable:H15		4		1	3	
O-Untypeable:H18				1		
O-Untypeable:H2		1		1	1	1
O-Untypeable:H20		1		1		1
O-Untypeable:H21		1			1	
O-Untypeable:H25		1				1
O-Untypeable:H28		3				
O-Untypeable:H4	1	2		2	1	
O-Untypeable:H14				1		1
O-Untypeable:H35						1
O-Untypeable:H40		2			1	
O-Untypeable:H7	1	2		1		1
O-Untypeable:H16			1			
O-Untypeable:H45	1		2			
O-Untypeable:H8			1	1	1	
O-Untypeable:H56	1					
Other		2				
Grand Total	760	770	687	712	911	758

Figure 2: VTEC serogroup distribution Human VTEC isolates 2002-2021 (as a % of total culture pos & neg)

Toxins

VTEC pathogenicity is caused by verotoxins (*vtx*). There are two types of verotoxins, *vtx1* and *vtx2*. Both are encoded on a lamboid lysogenic bacteriophage. Either *vtx1* or *vtx2* or both together can be present. There are 3 subtypes of *vtx1; vtx1a, vtx1c, vtx1d* and 7 subtypes *of vtx2; vtx2a, vtx2b, vtx2c, vtx2d, vtx2e, vtx2f,* and *vtx2g*. Multiple subtypes can be present. The presence any type of toxin is determined by PCR and the subtypes are determined by WGS. Therefore, the presence of *vtx1* and *vtx2* is determined for culture positive and culture negative cases (992), but detection of toxin subtype is possible only for the culture positive cases (760). The proportion of toxin serogroups remained relatively stable over the past number of years. 2022 saw 27.3% *vtx1,* 32% *vtx2* and 40.7% *vtx1+ vtx2* (table 3, fig 4).

Toxin Subtypes

Toxin subtypes are determined by WGS therefore there is only data available for culture positive cases. The presence of *vtx2* subtypes *vtx2a*, *vtx2c*, and *vtx2d* have been associated with increased risk of HUS development, however *vtx1a*, has also been associated with more severe illness, particularly in those aged <5 years. *Vtx1a* and *vtx2a* remain the most common toxin subtypes (Table 4).

Culture positivity

The proportion of cases where VTEC is detected by PCR but the organism could not be recovered on culture (ie PCR positive but culture negative) remains stable over the 6 years at an average of 20% (17%-23.5%), 23.5% in 2022. It is more likely that samples positive for vtx1+ vtx2 will be isolated p<0.001. (graphpad prism, anova, Fig 3).

Figure 3: Analysis of culture positivity

Toxin	2022				2020		2019		2018		2017		
genotype			2021										
	Culture	Culture	Culture	Culture	Culture	Culture	Culture	Culture	Culture	Culture	Culture	Culture	
	positive	Negative	positive	Negative	positive	Negative	positive	Negative	positive	Negative	positive	Negative	
vtx1	205	66	202	65	193	33	219	53	189	64	208	51	
vtx2	211	106	244	83	218	64	246	61	275	97	254	73	
Vtx1+2	344	60	324	46	276	43	247	37	447	42	296	52	
Total (%)	760(76.5)	232 (23.5)	770(79.8)	194 (20.2)	687 (83)	140 (17)	712 (82.5)	151 (17.5)	911 (82)	200 (18)	758 (76.5)	175 (23.5)	
Total	9	92	9	64	827		863		1111		933		

Fig 4: Toxin genotypes Human VTEC isolates 2017-2022

Year	Toxin	vtx1a	vtx1c	vtx1d	Vtx1a+c	vtx2a	vtx2b	vtx2c	vtx2d	vtx2e	vtx2f	vtx2g	Vtx2a+2c	Vtx2a+2d	Vtx2b+2c	Vtx2a+2b
2017	vtx1	172	23	1	1											
	vtx1+2	263	21	0	0	204	29	48	1	0	0	0	1	0	0	0
	vtx2					201	12	16	0	4	1	0	2	0	0	0
2018	vtx1	147	31	1	0											
	vtx1+2	406	31	0	0	268	45	123	0	0	0	0	0	1	0	0
	vtx2					189	17	28	10	2	1	1	0	0	1	0
2019	vtx1	176	33	3	0											
	vtx1+2	217	23	0	0	160	40	35	0	0	0	0	0	0	0	0
	vtx2					170	12	24	8	8	0	2	0	0	0	0
2020	vtx1	138	30	4	0											
	vtx1+2	221	24	0	0	165	36	38	1	0	0	0	0	0	0	0
	vtx2					171	12	8	3	2	0	0	0	0	0	0
2021	vtx1	158	38	1	0											
	vtx1+2	291	27	1	0	227	42	31	0	0	0	0	1	0	0	0
	vtx2					169	14	23	8	1	4	4	1	0	0	0
2022	vtx1	145	58	2	0											
	vtx1+2	308	35	0	0	208	54	76	1	0	0	0	3	0	0	0
	vtx2					155	24	13	10	2	1	4	1	0	0	1

Table 4: Toxin subtypes Human VTEC isolates 2017-2021 detected by WGS

Note: Data for culture positive cases only

Food and Water Isolates

In 2022 140 water samples and 14 food samples were tested for VTEC. VTEC was not detected in any of the food samples. VTEC was detected in 11 water samples, 10 were culture positive and one PCR only positive and culture negative). 10/11 VTEC positive waters were tested in response to a VTEC positive clinical case. However, only 2/10 had a genetic relatedness to corresponding clinical cases. This is not an unusual occurrence and usually indicates an ongoing contamination of the water source. In the period from 2017 to 2022, VTEC was isolated from 61 water samples (table 5). Between 7-15 isolates were isolated each year, 10 in 2022. There were a variety of serogroups detected, VTEC O157 and VTEC 0136 accounting for 16 and 15 samples respectively, VTEC O26 was isolated from just 5 samples.

Serogroup	2022	2021	2020	2019	2018	2017
0-						1
unidentifiable:H11						
O103:H2					3	
O109:H16			1			
O113:H4			2			
O116:H28				2		
O116:H8						1
O136:H12		1	4	3	2	4
O136:H16	1					
O146:H21	1	1				1
O15:H16			1			
O157:H7	2	1	4	3	4	2
O165:H25			1			
O168:H8	1	2		1		
O177:H25	1					
O26:H11	2	1	1			1
O27:H30	1					
O5:Unknown	1					
O8:H21					1	
O8:H28		1				
O84:H2		1				
Grand Total	10#	8*	15	9	10	10

Table 5: Serogroup of water isolates 2017-2022

*8 VTEC organisms isolated from 7 water samples

[#] In addition to the 10 isolated strains in 2022, 1 water sample was positive for vtx2 by PCR but culture negative

Table 6: Toxin genotypes and subtypes of water isolates 2022

Toxin genotype	Number	vtx1a	vtx1c	vtx2a	Vtx2b	vtx2g
vtx1	1	1				
vtx2	6			6	1	1
Vtx1+2	3	2	1	2	1	
Total	10	3	1	8	2	1

Whole Genome Sequencing

In 2022 all clinical and water VTEC isolates were characterised by WGS. WGS gives information on serotype, toxin type, toxin subtype, virulence genes, sequence type(ST) and AMR. Core genome MLST (cgMLST) was used to determine genetic relatedness between isolates and thus identify outbreaks/clusters. Each time a sequencing run is carried out, the new sequences are compared to all of the isolate sequences in the database (≈4000). Isolates with ≤6 allele differences are likely to have been exposed to the same source or linked by person-to-person transmission, based on this cut-off, if a cluster is identified, a cluster report is generated and sent to relevant stakeholders including referring hospital, Dept. of Public Health and HPSC. Where the presence of a clonal strain is seen, a surveillance note is issued. In 2022 75 cluster reports were issued, ranging from 2 related isolates to a general outbreak with 27 cases. 7 surveillance notes were also issued in 2022.

Fig 5: cgMLST Dendrogram of all clinical 760 VTEC isolates 2022

Isolates are coloured by serogroup.

Fig 6: cgMLST Dendrogram of 168 VTEC O157 isolates from 2022

The number of allele difference by cgMLST can be seen as branch labels.

Fig 7: cgMLST Dendrogram of 231 VTEC O26 isolates from 2022

The number of allele difference by cgMLST can be seen as branch labels. Nodes are coloured by county of origin.