Immunity and how vaccines work

Dr Mary O Meara National Immunisation Office

Objectives of session

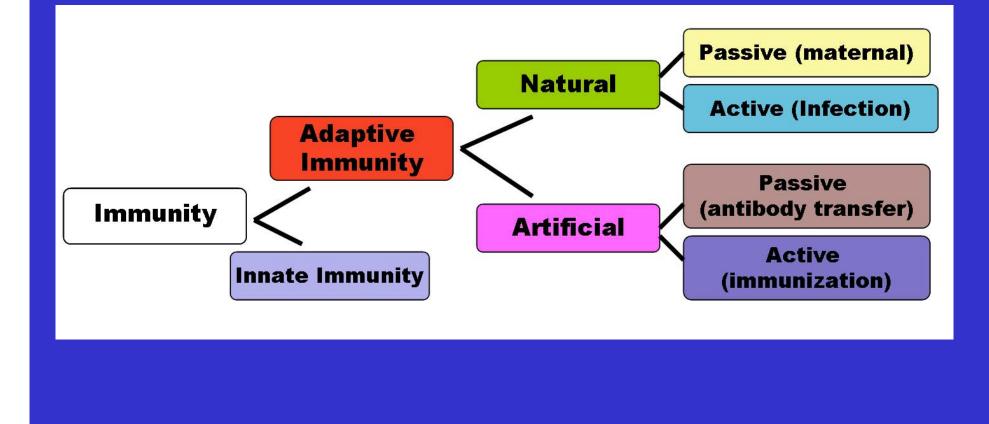
An understanding of the following principles

- Overview of immunity
- Different types of vaccines and vaccine contents
- Vaccine failures
- Time intervals between vaccine doses
- Vaccine overload
- Adverse reactions
- Herd immunity

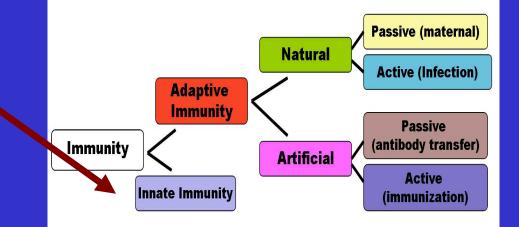
Immunity

The ability of the human body to protect itself from infectious disease

The immune system


- Cells with a protective function in the
 - bone marrow
 - thymus
 - lymphatic system of ducts and nodes
 - spleen
 - blood

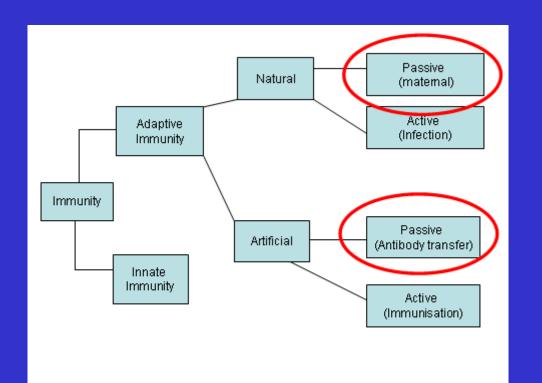
Types of immunity



Natural (innate) immunity

Non-specific mechanisms

- Physical barriers
 - skin and mucous membranes
- Chemical barriers
 - gastric and digestive enzymes
- Cellular and protein secretions
 - phagocytes, macrophages, complement system


** No "memory" of protection exists afterwards **

www.immunisation.ie

Feidhmeannacht na Seirbhíse Sláinte Health Service Executive

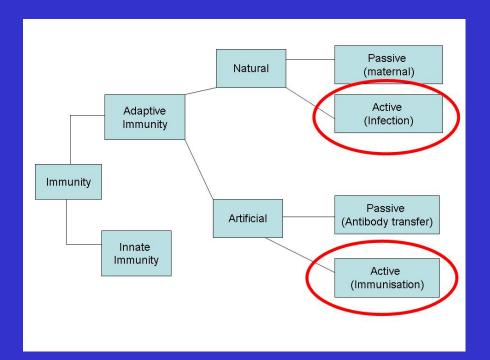
Passive immunity – adaptive mechanisms

Natural

 maternal transfer of antibodies to infant via placenta

Artificial

 administration of pre-formed substance to provide immediate but short-term protection (anti-toxin, antibodies)


Protection is temporary and wanes with time (usually few months)

Active immunity – adaptive mechanisms

Natural

 following contact with organism

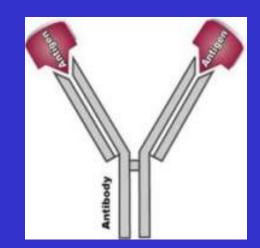
Artificial

 administration of agent to stimulate immune response (immunisation)

Acquired through contact with an micro-organism Protection produced by individual's own immune system Protection often life-long but may need boosting

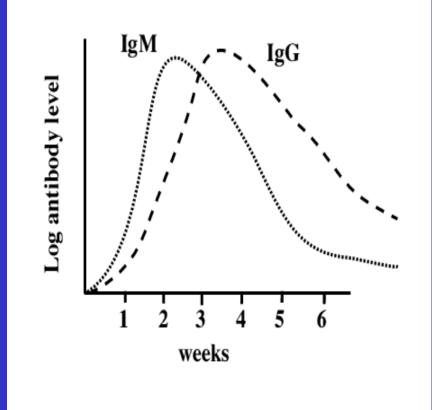
Antigen

A live or inactivated substance (e.g. protein or polysaccharide) capable of producing an immune response



Antibodies

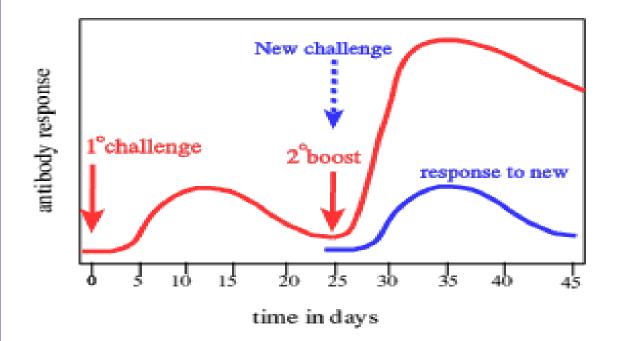
- Different types
 - IgM, IgG, IgA, IgD, IgE
- Functions
 - Neutralise toxins


- Block adhesion/cell entry of the antigen
- Neutralise and prevent viral replication
- Antigen specific
 - Cannot cross-protect different type of microorganism

Immune response following exposure to antigen

Primary response

- rapid
- mainly IgM


Secondary response

- faster and more powerful
- mainly IgG

Specific memory is the hallmark of the adaptive immune response

How vaccines work

- Induce active immunity
 - Immunity and immunologic memory similar to natural infection but without risk of disease
- Immunological memory allows
 - Rapid recognition and response to pathogen
 - Prevent or modify effect of disease

Classification of vaccines

- Live attenuated
- Inactivated
 - Whole cell
 - Fractionated
 - Protein based
 - Toxoid
 - Sub unit
 - Polysaccharide
 - Pure
 - Conjugate

Live attenuated vaccines

Weakened viruses /bacteria

- Achieved by growing numerous generations in laboratory
- Produces long lasting immune response after one or two doses
- Stimulates immune system to react as it does to natural infection
- Can cause mild form of the disease (e.g. mini measles which is non transmissible)
- CANNOT be given to immuno-compromised persons

e.g. BCG/ MMR/ Varicella/ Yellow fever

Inactivated vaccine and toxoids

- Cannot cause disease they are designed to protect against
- Doses
 - Two of more doses plus booster doses usually required
- Whole
 - Viruses (IPV, hepatitis A, influenza))
 - Bacteria (whole cell pertussis)
- Fractional
 - Protein-based
 - Toxoid (diphtheria, tetanus)
 - Subunit (Hepatitis B, acellular pertussis)
 - Polysaccharide-based
 - Pure
 - Conjugate

Polysaccharide vaccines

- Immunogenicity
 - Less immunogenic than toxoids
 - Response in children poor
- Duration of protection
 - Does not provide lifelong immunity, booster often needed

e.g.

- Pneumococcal polysaccharide vaccine
- Meningococcal ACWY polysaccharide vaccine (travel)

Vaccine components

- Conjugating agents
 - Carrier proteins which combine with antigens to improve immunogenicity
 - E.g. Men C, PCV, Hib
- Suspension fluid
 - Fluid (water, saline, tissue-culture mixture)
- Preservatives, stabilisers, antimicrobial agents
 - Trace amounts used to stabilise vaccine
 - May cause allergic reaction

Vaccine components

- Adjuvants
 - Aluminium salt used to increase immunogenicity of vaccines containing inactivated micro-organisms or their products
 - e.g.
 - Hepatitis B vaccine
 - Tetanus toxoid
 - Diphtheria toxoid

Vaccine components

- Thiomersal*
 - Used in vaccine production since the 1930s
 - Mercury containing compound used in some vaccines to prevent bacterial and fungal growth
 - Also used as inactivating agent in early stage of production of some killed vaccines
 - In 1999 EU and U.S. manufacturer's decision to decrease thiomersal levels in vaccines

*also known as thimerosal

Vaccine failure

- Primary
 - Inadequate immune response to vaccine (e.g.MMR1)
 - Infection possible any time post vaccination
- Secondary
 - Adequate antibody response immediately after vaccination
 - Level of antibodies decrease with time
 - Booster doses usually required
 - Feature of many inactivated vaccines

Time intervals between vaccine doses

Antigen combination	Recommended minimal interval between doses
≥2 killed antigens	No minimum interval
Killed and live antigens	No minimum interval
≥2 live antigens	Four-week minimum interval if not administered simultaneously

Time intervals between vaccine doses

- 2 Live vaccines Minimum one month interval required
 - Allows each immune response to develop
 - Allows the next response to be a true secondary response – i.e. faster and bigger and with higher affinity IgG
 - Diminishes immune interference

Vaccine overload

- The human body is composed of 10 trillion cells and contains 100 trillion bacteria
 - On average there are
 - 1000 bacteria on each cm² of skin
 - 1,000,000 bacteria on each cm² of the scalp
 - 100,000,000 bacteria per gram of saliva
- The maximum number of antigens in a vaccine was ~3000 (DTwP, most from wP)
- With the new vaccines this number is much lower still
- No evidence that vaccines can overload the immune system

http://www.schoolscience.co.uk/content/4/biology/abpi/immune/immune3

Adverse events

- Live vaccines:
 - frequency of adverse events falls with number of doses
 - If antibody is made -> neutralises small amount of vaccine virus in any subsequent vaccine dose
 - E.g. MMR
- Inactivated vaccines
 - frequency of adverse events increases with number of doses
 - Good antibody levels ->good secondary immune response
 - May be inflammatory (i.e. produce a sore arm)
 - E.g. tetanus, pertussis

Herd immunity

- Only applies to diseases which are passed from person to person
- For each disease
 - a certain level of immunity in the population which protects the whole population because the disease stops spreading in the community
- Provides indirect protection of unvaccinated as well as vaccinated individuals.
- May be the most important aspect of how vaccines work
 - MMR given to infants protects pregnant women from rubella.
 - Can eradicate disease even if some people remain susceptible

http://www.immunisation.nhs.uk/About_Immunisation/Science/How_immunisation_works_-_animation

Acknowledgements

Core Topic 2 Training slides, Health Protection Agency, UK, Feb 2008 <u>www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1194947391135</u>

Understanding vaccines, National Institutes of Health, US Jan 2008 <u>www3.niaid.nih.gov/healthscience/healthtopics/vaccine/PDF/undvacc.</u> <u>pdf</u>

