Immunity and How Vaccines Work

Kevin Connolly Waterford, Aug. 25, 2016

Definitions

<u>Antibody:</u> immunoglobulin (Ig) produced mainly by plasma cells, which identifies and neutralises pathogens

Antigen: Anti(body) gen(erator):substance that can provoke an immune response

Epitope:. the specific piece of the antigen to which an antibody binds.

Humoral: relating to fluids

<u>Innate</u> – present from birth

Immune System Overview

Hematopoietic

Vasculature

•Lymphatic

Innate - Surface Defenses

Skin: physical barrier to microbes

keratin resistant to bacterial enzymes & toxins secretions are acidic

Mucosa: physical barrier

produces a variety of protective chemicals

Gastric mucosa: physical barrier very acidic & produces proteolytic enzymes

Saliva, tears

contain lysozyme

Mucous

traps, moves bacteria away from epithelial surface

Lymphoid System

Primary lymphoid organs:

Where lymphocytes destined to become B and T cells mature

Bone marrow - B cells mature

<u>Thymus</u> - T cells mature, migrate to secondary lymphoid organs

Lymphoid System

Secondary lymphoid organs: Sites where lymphocytes

gather to encounter antigens

<u>Lymph nodes</u>, <u>spleen</u>, <u>tonsils</u>, <u>adenoids</u> <u>appendix</u>

Situated to allow for initiation of immune response from nearly any place in body

NK cells

- Large granular lymphocytes, components of innate immunity
- 10-15% of peripheral blood lymphocytes
- Kill virus-infected and tumor cells
- Secrete cytokines and chemokines CCL3, CCL4 & CCL5

Fig 2.41 © 2001 Garland Science

Inflammation

Inflammation

Phagocytosis

(a) Phases of phagocytosis

Innate Immunity: A (Very) Broad Overview

Kupffer cells Langerhans Cells Dendritic Cells Macrophages

Granulocytes

PMNs Mast Cells Eosinophils

Lymphocytes

NK cells NK T cells

Adaptive Immune System

- Adaptive: responds to specific foreign substances
- <u>Innate and adaptive mechanisms work</u> <u>together</u>

Types of Adaptive Immunity

Adaptive Immunity

Immune system adapts to previously unseen molecules

Induction by infection, vaccination

Immune system mounts response

Immune response must:

Recognise micro-organism as foreign

Respond by producing specific antibodies, lymphocytes

Mediate elimination of organisms

Innate Immunity	Adaptive Immunity
Pathogen recognized by receptors encoded in the germline	Pathogen recognized by receptors generated randomly
Receptors have broad specificity, i.e., recognize many related molecular structures called PAMPs (p athogen- a ssociated m olecular p atterns)	Receptors have very narrow specificity; i.e., recognize a particular epitope of antigen
PAMPs are polysaccharides and polynucleotides that differ little from one pathogen to another but are not found in the host.	Most epitopes are derived from polypeptides (proteins) and are specific to each pathogen
Receptors are PRRs (p attern r ecognition r eceptors)	The receptors are B-cell (BCR) and T-cell (TCR) receptors for antigen
Immediate response	Slow (3–5 days) response (need clones of responding cells to develop
Little or no memory of prior exposure	Memory of prior exposure
Occurs in all multicellular animals	Occurs in vertebrates only

Active Humoral Immunity

Naturally acquired: natural exposure to antigen (i.e. infection)

Artificially acquired: vaccines

live attenuated, non-live (killed or fragmented pathogen injected to elicit an immune response

Primary response (immunity without disease)
Secondary response (boosters) - intensify
response

Specific Memory and Adaptive Response

Adaptive Defenses: Components

Humoral Immunity: provided by antibodies in body fluids

Cell mediated immunity: lymphocytes directly attack specific invaders by lysis or indirectly by initiating inflammation and activating other lymphocytes and macrophages

Adaptive System: Cells

Lymphocytes: initially uncommitted

T-cells: sorted in the Thymus

manage the immune response

B-cells: sorted in the marrow

Antigen Presenting Cells (APCs)

Functions of T_H Cells

Orchestrate immune response

- Recognize antigen presented by APC
- If T_H cell recognizes antigen, cytokines are delivered
- Cytokines activate APC to destroy antigen

Activate B cell

- If T_H cell encounters B cell bearing antigen
- T_H cell produces cytokines
- Cytokines activate B cell
- B cell proliferates
- Drives formation of B memory cells

Adaptive Humoral Response

B-cells: Antigen challenge to naïve B-cell

Antigen binds to B-cell receptors

Antigen ingested by B-cell

B cell presents antigen to T-cell

B cell produces antibody

Adaptive Immune System: Cells

Antigen Presenting Cells (APCs)

Macrophages & B lymphocytes

Ingest foreign material

Present antigenic fragments on their cell

Fragments recognised by T-cells.

Innate Immunity can Trigger Adaptive Immunity

- Macrophages and dendritic cells "present" antigens to T cells
- This triggers cell- and humoral -mediated adaptive immune responses
- Interaction of PAMPs and TLRs on dendritic cells → secrete cytokines
 → production of T cells
- B cells are also antigen-presenting cells
- Pathogens coated with C3 bind more strongly to B cells → antibody production occurs at doses of antigen far lower than would otherwise be needed

Note: Several vaccine adjuvants contain PAMPs → stimulate innate immune system → enhances response of the adaptive immune system to the vaccine

Antigen Presenting Cell

Innate and Adaptive Immunity Work Together

What is a Vaccine?

- Biological preparation that improves immunity to a particular disease
- Contains antigen(s) that resembles a pathogen
- Stimulates immune system to recognise antigen as foreign,

destroy it, and "remember" it

Pathogens later encountered cause memory response

Live Attenuated Vaccines

- Attenuated "wild" virus or bacterium
- Can replicate immune response is similar to natural infection
- Usually effective with one dose
- Severe reactions possible
- Can revert to a wild-type pathogen
- Fragile must be stored carefully

Non-live Vaccines

- No chance of recreating live pathogen
- Less interference from circulating antibody than live vaccines
- Cannot replicate, thus generally not as effective as live vaccines
- Usually require 3-5 doses
- Immune response mostly antibody based

How Vaccines Work

Primary and Memory Response

Reported Cases of VPDs, Europe

	1980	2000	2011	2012	2013	
Diphtheria	608	1,585	33	32	32	
Measles	851,849	37,421	37,073	26,982	25,375	
Mumps	No data	243,344	27,448	38,141	35,075	
Pertussis	90,546	53,675	34,432	56,941	27,824	
Polio	549	0	0	0	0	
Rubella	No data	621,039	9,672	30,509	39,614	
Rubella (CRS)	No data	48	7	60	50	
Tetanus	1,715	412	197	194	93	

Vaccines Work-European Data

Disease	20 th Century Annual Morbidity	Cases reported in 2007	Percent decrease
Small pox	29,005	0	100%
Diphtheria	21,053	0	100%
Measles	530,217	43	>99%
Mumps	162,344	800	>99%
Pertussis	200,752	10,454	95%
Polio (paralytic)	16,316	0	100%
Rubella	47,745	12	>99%
Cong. Rubella Synd.	152	0	100%
Tetanus	580	28	95%
Hib	20,000	22	>99%

JAMA 2007

MMWR Au

Inflammatory Response

Macrophages "clean up" pathogens

Activation of the complement cascade occurs and elements of adaptive immunity join the process

Antiviral proteins:

Interferon: some cells produce & release interferons (IFNs) when invaded by virus

IFNs stimulate nearby cells to produce proteins that interfere with viral replication

Complement: plasma proteins activated in the presence of foreign substances

Complement activation:

enhances and amplifies inflammation enhances innate and adaptive defenses causes lysis of bacteria

Complement activation pathways

<u>Classical pathway</u>: requires antibodies

- Antibodies bind to target (antigen)
- Complement protein C1 binds to the antibodyantigen complex (complement fixation)

<u>Alternative pathway</u>: complement factors interact with microorganism surface carbohydrates

 Both lead to a cascade of protein activation, leading to activation of C3

Inflammatory Response

Phagocyte mobilisation: infiltration of damaged area by neutrophils and macrophages

Leucocytosis: leukocytosis-inducing factors released by injured cells

promote rapid release of WBCs from marrow

Margination: increased vascular permeability causes decreased fluid in vessels; blood flow slows, neutrophils cling to vessel margins

Innate Defenses Inflammatory Response

Diapedesis: neutrophils migrate through capillary walls

Chemotaxis: inflammatory chemicals attract neutrophils to move up the chemical concentration gradient

As the process continues, monocytes move into the area and become macrophages.

Innate Defenses

Innate: structural defenses; respond to nonspecific foreign substances

- <u>First line</u>: external surface epithelium and membranes
- <u>Second line</u>: inflammatory processes antimicrobial proteins, phagocytes, etc.