Immunity and How Vaccines Work

Immunisation Conference

Ballyshannon

11 May 2016

Dr Fionnuala Toal

The Immune System

- Network of cells and tissues which:
 - defend body against invading pathogens remove worn out cells and other debris destroy abnormal cells in the body

The key to a healthy immune system is its remarkable ability to distinguish between the body's own cells —self—and foreign cells—nonself because of antigens on the foreign surface.

Immune System Components

- White blood cells
- Lymphoid Tissues:
 - Bone marrow site of B cell development
 - Thymus -site of T cell maturation
 - Spleen, lymph nodes, Gut Associated Lymphoid Tissue, adenoids, appendix, tonsils

Organisation of the Immune System

Source http://en.wikipedia.org/wiki/Immunological_memory

Innate Immunity (Natural)

- 1st line of defence.
 - Non specific host defences
 - Initial and immediate response to pathogen invasion
- Physical barriers skin and mucous membranes
- Chemical barriers gastric and digestive enzymes
- Cellular and Protein secretions –complement, phagocytes, macrophages, mast cells, white blood cells.

Defining characteristic: No memory persists afterwards

Adaptive Immunity (acquired)

- 2nd line of defence. Develops as a response to infection.
- Adaptive means immune system adapts to previously unseen molecules.
- Slow, can take days or weeks.
- The foreign agent is recognised in a specific manner and the immune system develops a memory of it.
- The response increases in strength and effectiveness with each encounter.
- Cell mediated (T cells) and Humoral mediated (B cells)

Passive immunity – adaptive mechanisms

Natural

maternal transfer of antibodies to infant via placenta

Artificial

•administration of pre- formed substance to provide immediate but short-term protection (antitoxin, immunoglobulin)

Protection within 48 hours but is temporary and wanes with time (usually few months)

Active immunity – adaptive mechanisms

Natural

•following contact with organism

Artificial

•administration of agent to stimulate immune response (immunisation)

Induction of immunity by infection or vaccination is active immunity Protection produced by individual's own immune system Protection often life-long but may

How does adaptive (acquired) immunity work

- The invading organism has antigens on the exterior of its cells.
- Antigen is a live or inactivated substance capable of producing an immune response.
- Antibodies are proteins on cells in the immune system which react with antigens forming an antigen-antibody complex.
- The immune system is activated making more specific antibodies marking the antigen for destruction.
- The concept of the immune response to a specific antigen is central to development of vaccines

Active Immunity

- Macrophages digest most of the micro- organism except the antigens.
- They 'regurgitate' the antigens displaying them on their surface so that white cells called lymphocytes can take over the attack (T cells and B cells)
- Humoral Immunity
- B cells (antibodies)
- <u>Cell mediated Immunity</u>
 - T cells activate immune response
 - Killer cells destroy infected cells and micro-organisms
 - Helper cells stimulate and direct activity of other immune cells e.g. T and B cells..

Antibodies

- Different types
 - IgM, IgG, IgA, IgD, IgE made by B cells
- Functions
 - -Neutralise toxins
 - -Block adhesion/cell entry of the antigen
 - Neutralise and prevent organisms replication
 Signals macrophages etc to come
 Kills organism via complement -lysis
- Antigen specific
 - -Cannot cross-protect different type of microorganism

Memory cells

- After the body has eliminated the infection, some B cells and T cells become memory cells.
- These retain memory of the pathogen
- On re-exposure to the antigen, the different B and T cell clones will increase to form a polyclonal response and mount a powerful immune response.
- This ability of the immune system to have a memory for previous antigens is the basis for vaccination.

How soon after immunisation are we protected?

Specific memory is the hallmark of the adaptive immune response

Takes 4-7 days to generate immune response.

>7 days get Primary immune response

••Mainly IgM

Primary response turned off after about 3 weeks. Memory B cells made.

Secondary/subsequent immune response

- More powerful and faster
- Mainly IgG.
- Occurs as memory cells secrete Ab when agent reencountered.

Takes 2 weeks to get optimum immune response after vaccination Source: HPA 18

- <u>Vaccine</u> is a suspension of live attenuated or inactivated micro-organisms or fractions thereof given to induce immunity and prevent infectious disease.
- <u>Vaccination</u> is the administration of any vaccine or toxin.
- <u>Immunisation</u> means receiving a vaccine and also becoming immune because of being vaccinated.

How vaccines work

- Induce active immunity artificially
- Immunity and immunological memory similar to natural infection but without the risk of disease
- Immunological memory allows
 - Rapid recognition and response to the antigens of the micro-organism
 - Prevents or modifies effect of the disease

Classification of Vaccines

1. Live attenuated

2. Inactivated

- > Whole cell
- ➢ Fractionated
 - Protein based
 - Subunit
 - Toxoid
 - Polysaccharide
 - Pure
 - Conjugate

Live attenuated vaccines

- Weakened viruses / bacteria
- Achieved by growing numerous generations in lab
- Causes immune response closest to that which the natural infection would – has cellular (T-cell) and humoral(B-cell) components.
- Produces long lasting immunity after 1 or 2 doses
- Can cause mild version of the disease e.g. mini measles which is not transmissible
- Can cause active disease in immunocompromised persons
- E.g. BCG / MMR / Varicella / Yellow Fever/Rotavirus

Non live vaccines

- Cannot cause disease they are designed to protect against
- Cannot replicate
- Immune response mostly antibody based.
- Antibody titre falls with time. Often need adjuvant or conjugation to stimulate the immune response.
- Doses
 - 3-5 doses usually required
- Classified as
 - Inactivated
 - Conjugate
 - Recombinant
 - Sub unit

Inactivated vaccine and toxoids

•contains killed bacteria or viruses, or a portion thereof e.g. inactivated polio vaccine

toxoids

e.g. tetanus, diphtheria

<u>Conjugate vaccine</u> •where a protein or polysaccharide antigen is linked to a carrier protein e.g. meningococcal C conjugate vaccine

<u>Recombinant vaccine</u> •produced through recombinant DNA technology e.g. hepatitis B and HPV vaccine

Sub unit vaccine

•contains only specific antigenic proteins of an infectious agent e.g. acellular pertussis and some influenza vaccines

Vaccine Components

• Conjugating agents

Some bacteria have an outer polysaccharide coat to disguise the antigens -encapsulated organisms- making it difficult for the immune system to respond to the bacterium inside. So

- Carrier proteins are used which combine with antigens to improve immunogenicity.
- Men C, PCV, Hib
- <u>Suspension fluid</u>

– Fluid (water, saline, tissue-culture mixture)

- Preservatives, stabilisers, antimicrobial agents
 - Trace amounts used to stabilise vaccine
 - May cause allergic reaction

Vaccine Components

- <u>Adjuvants</u>
 - Aluminum salts used to increase immunogenicity of vaccines containing inactivated micro-organisms or their products.

e.g.

- •Hepatitis B vaccine
- Tetanus toxoid
- Diphtheria toxoid

Thiomersal*

- Mercury containing compound used as a preservative in some multidose vaccines to prevent bacterial and fungal growth
- Also used as inactivating agent in early stage production of some killed vaccines
- In 1999 E.U. and U.S. manufacturer's decided to decrease thiomersal levels in vaccines as a precaution and to retain trust in vaccine supply
- WHO state that there is no evidence of toxicity in infants, children or adults exposed to thiomersal other than hypersensitivity reactions.
- All vaccines used in the routine infant immunisation programme are thiomersal free.
 Some vaccines used in older children and adults contain trace amounts including some formulations of the influenza vaccine
- *Also known as thimerosal

Time intervals between vaccine doses

Antigen combination	Recommended minimal interval between doses
≥2 killed antigens	No minimum interval
Killed and live antigens	No minimum interval
≥2 live antigens	Four-week minimum interval if not administered simultaneously

Time intervals between vaccine doses Diminishes immune interference

- If another <u>live vaccine</u> is given while the immune system is making a primary immune response, the activation of the innate immune system may neutralise the second live vaccine so that it does not work. Hence we wait <u>4 weeks</u> to allow the immune system to recover
- <u>Human normal immunoglobulin</u> contains antibodies to many infections including measles. These antibodies will neutralise any live vaccine. Hence we wait <u>3 months</u> for the antibody level to fall

Time intervals between vaccine doses

- Allows each immune response to develop e.g. primary immunisation (1 month)
- This allows the next response to be a true secondary response – i.e. faster and bigger and with higher affinity IgG

Timing of Primary Immunisation Course

- Maternal IgG is transferred across the placenta
- Passively acquired IgG from mother can suppress response to DTP, Polio, Men C and Hib vaccine for about 2 months
- Maternal antibody to measles may interfere for up to a year

Time Interval Exceptions

Influenza & PCV

 In those aged 12-23 months these should be separated by at least 1 week due to slight increased risk of fever if given together

P Rotavirus

No interval needed between it and other live vaccines

? Yellow Fever and MMR

 Ideally separate by 1 month as may be suboptimal response if given together

Vaccine overload

- The human body is composed of 10 trillion cells and contains 100 trillion bacteria
- On average there are
 - 1000 bacteria on each cm² of skin
 - 1,000,000 bacteria on each cm² of the scalp
 - 100,000,000 bacteria per gram of saliva
- The maximum number of antigens in a vaccine is about 3000
- With the new vaccines this number is much lower still
- No evidence that vaccines can overload the immune system

http://www.schoolscience.co.wk/content/i&/biohoigy/abpi/immune/immune3

Adverse events

- Live vaccines:
 - frequency of adverse events falls with number of doses
 - If antibody is made -> neutralises small amount of vaccine virus in any subsequent vaccine dose
 - E.g. MMR

Inactivated vaccines

frequency of adverse events increases with number of doses
 Good antibody levels ->greater secondary immune response
 So may be inflammatory effects (i.e. produce a sore arm)

- E.g. tetanus, pertussis

Vaccine failure

Primary failure

- Individual fails to make an adequate immune response to the initial vaccination (e.g. in about 10% of measles and mumps vaccine recipients)
- Infection possible any time post vaccination

Secondary failure

- Individual makes an adequate immune response initially but then immunity wanes over time
- A feature of most inactivated vaccines, hence the need for boosters

Herd immunity

- Only applies to diseases which are passed from person to person
- For each disease
 - a certain level of immunity in the population which protects the whole population because the disease stops spreading in the community
- Provides indirect protection of unvaccinated as well as vaccinated individuals.
 Some cannot receive live vaccines eg immunocomprised.
 No vaccine is 100% effective.
- May be the most important aspect of how vaccines work
 - MMR given to infants protects pregnant women from rubella.
 - Can eradicate disease even if some people remain susceptible

http://www.immunisation.nhs.uk/About Immunisation/////

Resources

A Practical Guide to Immunisation HSE http://www.hse.ie/eng/health/immunisation/hcpinfo/trainingmanual/

• Immunity and how vaccines work. National Immunisation Office http://www.immunisation.ie/en/Downloads/TrainingManual/PDFFile_16731_en.pdf

Immunity and how vaccines work. Chapter 1 Green Book (UK)
 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/144249/Gree

n-Book-Chapter-1.pdf

• How Vaccines Work, NIH – National Institute of Allergy and Infectious Disease US www.niaid.nih.gov/topics/vaccines/understanding/pages/howwork.aspx

The immune system and vaccination immunisation advisory centre, university of auckland http://www.immune.org.nz/immune-system-and-vaccination

The immune system and vaccination

NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov